Infinite-dimensional hyperkähler manifolds associated with Hermitian-symmetric affine coadjoint orbits
نویسنده
چکیده
In this paper, we construct a hyperkähler structure on the complexification OC of any Hermitian symmetric affine coadjoint orbit O of a semi-simple L∗-group of compact type, which is compatible with the complex symplectic form of Kirillov-Kostant-Souriau and restricts to the Kähler structure of O. By the identification of the complex orbit OC with the cotangent space T ′O of O induced by Mostow’s Decomposition Theorem, this leads to the existence of a hyperkähler structure on T ′O compatible with Liouville’s complex symplectic form and whose restriction to the zero section is the Kähler structure ofO. Explicit formulas of the metric in terms of the complex orbit and of the cotangent space are given. As a particular case, we obtain the one parameter family of hyperkähler structures on a natural complexification of the restricted Grassmannian and on the cotangent space of the restricted Grassmannian constructed by hyperkähler quotient in [29] . Résumé Dans cet article, nous construisons une métrique hyperkählerienne sur l’orbite complexifiée OC de toute orbite coadjointe affine hermitienne symétrique O d’un L∗-groupe semi-simple de type compact, qui est compatible avec la forme symplectique complexe de Kirillov-Kostant-Souriau et qui se restreint en la structure kählérienne de O. Grâce à l’identification de l’orbite complexifiée OC avec l’espace cotangent T ′O de l’orbite de type compact O induite par le théorème de décomposition de Mostow, nous en déduisons l’existence d’une structure hyperkählérienne sur T ′O compatible avec la forme symplectique complexe de Liouville et dont la restriction à la section nulle est la structure kählérienne de O. Des formules explicites de la métriques en termes de l’orbite complexifiée et de l’espace cotangent sont données. Comme cas particulier, nous retrouvons la famille à un paramètre de structures hyperkählériennes sur une complexification naturelle de la grassmannienne restreinte et sur l’espace cotangent de la grassmannienne restreinte obtenue par quotient hyperkählérien en [29].
منابع مشابه
Classification of infinite-dimensional irreducible Hermitian-symmetric affine coadjoint orbits
In the finite-dimensional setting, every Hermitian-symmetric space of compact type is a coadjoint orbit of a finite-dimensional Lie group. It is natural to ask whether every infinite-dimensional Hermitiansymmetric space of compact type, which is a particular example of an Hilbert manifold, is transitively acted upon by a Hilbert Lie group of isometries. In this paper we give the classification ...
متن کاملThe Field Theory of Generalized Ferromagnet on the Hermitian Symmetric Spaces 1
We discuss the recent developments in the generalized continuous Heisenberg ferromagnet model formulated as a nonrelativistic field theory defined on the target space of the coadjoint orbits. Hermitian symmetric spaces are special because they provide completely integrable field theories in 1+1 dimension and self-dual Chern-Simons solitons and vortices in 2+1 dimension. Recently, an action prin...
متن کامل0 30 10 07 v 2 1 4 Ja n 20 03 Some considerations on topologies of infinite dimensional unitary coadjoint orbits
The topology of the embedding of the coadjoint orbits of the unitary group U(H) of an infinite dimensional complex Hilbert space H, as canonically determined subsets of the B-space Ts of symmetric trace class operators, is investigated. The space Ts is identified with the B-space predual of the Lie-algebra L(H) s of the Lie group U(H). It is proved, that orbits consisting of symmetric operators...
متن کامل/ 0 30 10 07 v 1 8 J an 2 00 3 Some considerations on topologies of infinite dimensional unitary coadjoint orbits
The topology of the embedding of coadjoint orbits of the unitary group U(H) of an infinite dimensional complex Hilbert space H, as canonically determined subsets of the Banach space Ts of symmetric trace class operators, is investigated. The space Ts is identified with the B-space predual of the Lie-algebra L(H) s of the Lie group U(H). It is proved, that orbits consisting of symmetric operator...
متن کاملTwistor Quotients of Hyperkähler Manifolds
We generalize the hyperkähler quotient construction to the situation where there is no group action preserving the hyperkähler structure but for each complex structure there is an action of a complex group preserving the corresponding complex symplectic structure. Many (known and new) hyperkähler manifolds arise as quotients in this setting. For example, all hyperkähler structures on semisimple...
متن کامل